Classification of positive radial solutions to a weighted biharmonic equation
نویسندگان
چکیده
<p style='text-indent:20px;'>In this paper, we consider the weighted fourth order equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \Delta(|x|^{-\alpha}\Delta u)+\lambda \text{div}(|x|^{-\alpha-2}\nabla u)+\mu|x|^{-\alpha-4}u = |x|^\beta u^p\quad \text{in} \quad \mathbb{R}^n \backslash \{0\}, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ n\geq 5 $\end{document}</tex-math></inline-formula>, id="M2">\begin{document}$ -n&lt;\alpha&lt;n-4 id="M3">\begin{document}$ p&gt;1 $\end{document}</tex-math></inline-formula> and id="M4">\begin{document}$ (p,\alpha,\beta,n) belongs to critical hyperbola</p><p id="FE2"> \frac{n+\alpha}{2}+\frac{n+\beta}{p+1} n-2. style='text-indent:20px;'>We prove existence of radial solutions equation for some id="M5">\begin{document}$ \lambda id="M6">\begin{document}$ \mu $\end{document}</tex-math></inline-formula>. On other hand, let id="M7">\begin{document}$ v(t): |x|^{\frac{n-4-\alpha}{2}}u(|x|) id="M8">\begin{document}$ t -\ln |x| then solution id="M9">\begin{document}$ u with non-removable singularity at origin, id="M10">\begin{document}$ v(t) is a periodic function if id="M11">\begin{document}$ \alpha \in (-2,n-4) id="M12">\begin{document}$ id="M13">\begin{document}$ satisfy conditions; while id="M14">\begin{document}$ (-n,-2] there exists corresponding id="M15">\begin{document}$ not periodic. We also get results about best constant symmetry breaking, which closely related Caffarelli-Kohn-Nirenberg type inequality.</p>
منابع مشابه
Existence of Positive Solutions to a Nonlinear Biharmonic Equation
In this note we use the Nehari manifold and fibering maps to show existence of positive solutions for a nonlinear biharmonic equation in a bounded smooth domain in Rn, when n = 5, 6, 7. Mathematics Subject Classification: 35J35, 35J40
متن کاملSingular Radial Entire Solutions and Weak Solutions with Prescribed Singular Set for a Biharmonic Equation
Positive singular radial entire solutions of a biharmonic equation with subcritical exponent are obtained via the entire radial solutions of the equation with supercritical exponent and the Kelvin transformation. The expansions of such singular radial solutions at the singular point 0 are presented. Using these singular radial entire solutions, we construct solutions with a prescribed singular ...
متن کاملRadial entire solutions for supercritical biharmonic equations ∗
We prove existence and uniqueness (up to rescaling) of positive radial entire solutions of supercritical semilinear biharmonic equations. The proof is performed with a shooting method which uses the value of the second derivative at the origin as a parameter. This method also enables us to find finite time blow up solutions. Finally, we study the convergence at infinity of regular solutions tow...
متن کاملPositive Solutions to a Linearly Perturbed Critical Growth Biharmonic Problem
Existence and nonexistence results for positive solutions to a linearly perturbed critical growth biharmonic problem under Steklov boundary conditions, are determined. Furthermore, by investigating the critical dimensions for this problem, a Sobolev inequality with remainder terms, of both interior and boundary type, is deduced.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Analysis
سال: 2021
ISSN: ['1534-0392', '1553-5258']
DOI: https://doi.org/10.3934/cpaa.2021149